

Plant Archives

Journal homepage: http://www.plantarchives.org
DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.102

MORPHOLOGICAL EVALUATION OF INDIGENOUS TAMARIND (TAMARINDUS INDICA L.) GENOTYPES AT SURGUJA DISTRICT OF CHHATTISGARH, INDIA

Varsha Minz*, H. K. Panigrahi and Yogesh Kumar Chandrakar

Department of Fruit Science, College of Agriculture, IGKV, Raipur (C.G.) 492012, India *Corresponding author E-mail: varshaminz30@gmail.com (Date of Receiving-23-05-2025; Date of Acceptance-31-07-2025)

ABSTRACT

Forty-two tamarind genotypes were evaluated at different villages of seven blocks in Surguja district of Chhattisgarh, India, during the years 2022-23 and 2023-24 to find out the variability in growth habit, floral and fruit characteristics of indigenous tamarind genotypes. Among the 42 tamarind genotypes, the growth habit was found upright in 15 genotypes, spreading in 9 genotypes and semi-spreading in 18 genotypes, while the tree foliage was dense in 22 genotypes and sparse in 20 genotypes while new flush colour was reddish green in 31 genotypes and reddish brown in 11 genotypes. Flower pigmentation was observed pale yellow with red veins in 20 genotypes and yellow with red veins in 22 genotypes. Furthermore, the fruit characteristics like mature pod shape was found curved in 12 genotypes, semi curved in 16 genotypes and straight in 14 genotypes, mature fruit colour was brown in 27 genotypes, reddish brown in 1 genotype and grey in 14 genotypes, mature fruit pulp colour was brown in 36 genotypes, light brown in 5 genotypes and reddish brown in 1 genotype while ripening period was early in 11 genotypes, medium in 23 genotypes and late in 8 genotypes under the present investigation.

Key words: Tamarind, evaluation, morphological, variability, genotypes

Introduction

Tamarind (Tamarindus indica L.) is a multipurpose perennial tree of the family Fabaceae, highly valued for its ecological adaptability, nutritional richness and economic importance (Morton, 1992). It is believed to have originated in tropical Africa but is now widely distributed across South and Southeast Asia (El-Siddig et al., 2006). In India, tamarind is extensively cultivated in traditional agroforestry systems, homesteads and community plantations, where it plays a critical role in rural livelihoods (Kumar et al., 2018). It is tolerant to drought, adaptable to marginal soils and extended life span make it particularly suited to semi-arid and sub-humid tropics (Mahapatra et al., 2019). The growth habit of tamarind is predominantly erect, spreading or semi-spreading, with a sturdy central trunk and an irregular, dome-shaped crown (Choudhary et al., 2016). Mature trees reach heights of 12-24 m, developing a broad canopy that provides dense shade (Rao et al., 2014). Variation in

canopy density is evident across genotypes, some accessions display dense, compact foliage, while others maintain a sparse, open crown structure (Patel *et al.*, 2018). New leaf flushes typically emerge in vibrant reddish-green or reddish-brown colour before turning bright green, a colour change largely driven by anthocyanin accumulation during early leaf development (Meena *et al.*, 2021). These flush colour transitions are not only visually striking but also serve as markers of physiological activity and genotypic diversity (Verma and Lakshmanan, 2019).

Tamarind flowers are small, bisexual and borne in loose racemes, each approximately 2–2.5 cm across. Petals are pale yellow or yellow with red streaks, adaptations thought to enhance pollinator attraction (Norton *et al.*, 2015). Sepals, often reddish or pink, enclose the developing buds and abscise at anthesis (Khan and Prasad, 2014). Pigmentation results from anthocyanin and carotenoid compounds, with streak

intensity varying considerably among genotypes (Gowda et al., 2019). Variability in flower colour has been linked to differences in pollinator assemblages and fruit set success (Asha et al., 2022). Flowering is largely seasonal, peaking between March and May in most Indian agroclimatic zones, with fruit set depending on phenological synchrony, pollen viability and pollinator activity (Reddy et al., 2016). The tamarind fruit is an indehiscent legume, showing wide diversity in size, shape and surface characteristics among genotypes (Mahajan et al., 2019). Pods range from straight to curved and may be bulged or flattened depending on seed configuration (Gupta and Singh, 2020). They grow 3–20 cm long and change colour from green during development to mature shades of brown, grey-brown or reddish-brown at full ripeness (Chakraborty et al., 2021). As pods dry, their brittle epicarp facilitates easy cracking and pulp extraction. Morphological descriptors such as pod colour have been identified as critical markers in germplasm evaluation (Pooja et al., 2018). Within the pods, tamarind pulp is fibrous, sticky and acidulous-sweet, transitioning from green to brown or reddish-brown as ripening progresses (Ahmed et al., 2019). Pulp colour and texture vary by genotype and maturity stage, influencing consumer preference and marketability (Chakma et al., 2020). Tamarind pulp is a rich source of organic acids, sugars, pectins and polyphenolic compounds, contributing to its wide use in culinary, medicinal and industrial applications (Narayanaswamy et al., 2015). Uniformly coloured brown or reddish-brown pulp types are generally preferred for processing and commercial-scale applications (Kannan et al., 2017).

Tamarind fruits exhibit an extended development cycle, typically requiring 8–10 months from flowering to physiological maturity (Prasad & Menon, 2013; Hussain et al., 2019). Ripening period varies widely among genotypes, with accessions classified as early (<255 days), mid-season (255–270 days) or late (>270 days) (Rao and Dey, 2021). Pods often remain attached to trees even after ripening, gradually dehydrating and concentrating sugars, which enhances flavour and shelf life (Roy et al., 2022). The ripening period is considered a critical descriptor in germplasm characterization and harvest management (Singh et al., 2021).

The variability found in growth habit, foliage density, flower pigmentation, pod morphology, pulp colour and ripening period reflects the broad genetic base of tamarind (Ghosh *et al.*, 2015). These characteristics determine agro-ecological adaptability, productivity and market acceptance. Selection and breeding programs prioritize traits such as compact canopy architecture for intensive

planting, uniform pulp colour and synchronized ripening to meet industrial requirements (Lakshmanan and Mehta, 2021). Additionally, flower pigmentation and new flush colour are valuable phenotypic markers for genotype identification at early stages (Sharma et al., 2017). Despite its high economic and ecological importance, comprehensive characterization of tamarind germplasm remains limited in many regions, particularly central India. Systematic evaluation of morphological traits like flower pigmentation, new flush colour, growth habit, tree foliage type, pod shape and colour, pulp attributes and ripening period is crucial for germplasm conservation, selection and targeted breeding (Singh and Rao, 2020). The present study was therefore designed to document trait variability among a diverse set of tamarind genotypes, identify promising accessions for genetic improvement and provide a descriptive framework to support conservation and utilization of tamarind genetic resources.

Materials and Methods

The present study was carried out using 42 tamarind (Tamarindus indica L.) genotypes collected from seven blocks of Surguja district, namely Ambikapur, Batauli, Lakhanpur, Udaipur, Lundra, Mainpat and Sitapur. Surguja is located in the northern part of Chhattisgarh between 22°19' N to 24°6'N latitude and 81°34' E to 84°4' E longitude with an altitude of 623 meters above from mean sea level. These genotypes were selected based on phenotypic variability and fruiting performance and the collected genotypes were evaluated using Randomized Block Design (RBD) with four replications. The morphological characterization of the genotypes was carried out using the Tamarind Descriptor developed by Central Horticulture Experiment Station (CHES), ICAR-IIHR, Godhra (2017). The fruits were randomly collected from each tamarind genotype and further analysis was done at Horticulture Processing Laboratory, Department of Fruit Science, College of Agriculture, IGKV, Raipur, Chhattisgarh.

Result and Discussion

Variability in morphological characteristics

The morphological characteristics of tamarind genotypes were recorded for the following variables *i.e.* growth habit, tree foliage type, new flush colour, flower pigmentation, mature pod shape, mature fruit (pod) colour, mature fruit pulp colour and ripening period respectively, based on tamarind key descriptor, which are presented in Table 1 and graphically depicted from Fig. 1 to 3.

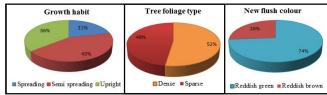
Growth habit

Growth habit for forty-two genotypes of tamarind

Table 1: Variability in morphological characteristics of different tamarind genotypes.

Sr. No.	Genotypes	Growth Habit	Tree foliage type	New flush colour	Flower pigmentation	Mature pod shape	Mature fruit (pod) colour	Mature fruit pulp colour	Ripening period
1	STAM-1	Semi spreading	Dense	Reddish green	Pale yellow with red veins	Semi curved	Brown	Brown	Mid
2	STAM-2	Upright	Sparse	Reddish green	Pale yellow with red veins	Semi curved	Brown	Brown	Late
3	STAM-3	Semi spreading	Dense	Reddish green	Pale yellow with red veins	Semi curved	Grey	Brown	Mid
4	STAM-4	Semi spreading	Sparse	Reddish green	Yellow with red veins	Curved	Brown	Brown	Mid
5	STAM-5	Spreading	Sparse	Reddish green	Pale yellow with red veins	Straight	Brown	Light brown	Late
6	STAM-6	Upright	Sparse	Reddish brown	Yellow with red veins	Semi curved	Grey	Brown	Late
7	STAM-7	Upright	Sparse	Reddish green	Yellow with red veins	Straight	Brown	Brown	Early
8	STAM-8	Upright	Dense	Reddish green	Yellow with red veins	Straight	Grey	Brown	Early
9	STAM-9	Semi spreading	Dense	Reddish green	Yellow with red veins	Semi curved	Grey	Brown	Mid
10	STAM-10	Semi spreading	Dense	Reddish green	Pale yellow with red veins	Straight	Brown	Brown	Mid
11	STAM-11	Spreading	Sparse	Reddish green	Yellow with red veins	Semi curved	Brown	Light brown	Mid
12	STAM-12	Upright	Sparse	Reddish brown	Pale yellow with red veins	Semi curved	Brown	Brown	Late
13	STAM-13	Semi spreading	Dense	Reddish brown	Pale yellow with red veins	Semi curved	Brown	Brown	Mid
14	STAM-14	Semi spreading	Dense	Reddish brown	Yellow with red veins	Straight	Reddish brown	Reddish brown	Mid
15	STAM-15	Semi spreading	Dense	Reddish green	Pale yellow with red veins	Semi curved	Brown	Brown	Late
16	STAM-16	Spreading	Dense	Reddish green	Pale yellow with red veins	Straight	Brown	Light brown	Early
17	STAM-17	Spreading	Sparse	Reddish green	Pale yellow with red veins	Straight	Brown	Light brown	Mid
18	STAM-18	Upright	Sparse	Reddish green	Yellow with red veins	Semi curved	Grey	Brown	Mid
19	STAM-19	Spreading	Sparse	Reddish brown	Pale yellow with red veins	Semi curved	Brown	Brown	Early
20	STAM-20	Upright	Dense	Reddish green	Yellow with red veins	Straight	Grey	Brown	Mid
21	STAM-21	Semi spreading	Sparse	Reddish green	Yellow with red veins	Curved	Brown	Brown	Mid
22	STAM-22	Spreading	Dense	Reddish green	Yellow with red veins	Curved	Brown	Brown	Mid
23	STAM-23	Semi spreading	Sparse	Reddish green	Yellow with red veins	Curved	Brown	Brown	Early
24	STAM-24	Upright	Dense	Reddish brown	Pale yellow with red veins	Curved	Grey	Brown	Mid

Continue ...1


	l			Reddish	Yellow with	Semi					
25	STAM-25	Upright	Sparse	green	red veins	curved	Grey	Brown	Early		
				Reddish	Yellow with	curvea	-		-		
26	STAM-26	Semi spreading	Sparse		red veins	Straight	Grey	Brown	Late		
		1	<u> </u>	green Reddish	Pale yellow	Semi					
27	27 STAM-27	Upright	Sparse		with red veins		Grey	Brown	Mid		
			Sparse	brown	Yellow with	Semi	Brown	Brown	Early		
28	STAM-28	Spreading		Reddish							
		Upright	Dense	green	red veins	curved Curved	Brown	7:1.	Ĭ		
29	STAM-29			Reddish	Yellow with			Light	Mid		
	30 STAM-30	Semi spreading	Dense	green	red veins	Straight	Brown	brown Brown	Mid		
30				Reddish	Pale yellow						
	21121120	Semi spreading	Dense	brown	with red veins	Curved	Brown	Brown	Early		
31	STAM-31			Reddish	Pale yellow						
	STAM-32	Spreading	Sparse	green	with red veins	Straight	Brown	Brown	Late		
32				Reddish	Pale yellow						
32	STAM-33		Dense	green	with red veins	Curved	Grey	Brown	Mid		
33				Reddish	Pale yellow						
33	STAM-34	Semi spreading Spreading	Dense	green	with red veins	Curved	Brown	Brown	Mid		
34				Reddish	Yellow with						
) 34	31AW-34	1		green	red veins	Curved	Brown	Brown	Early		
25	CTAM 25			Reddish	Pale yellow						
33	35 STAM-35	Upright	Sparse	brown	with red veins				Mid		
26				Reddish	Yellow with						
36		Semi spreading	Dense	brown	red veins	Straight	Brown	Brown			
27				Reddish	Yellow with						
3/	37 STAM-37	Semi spreading	Dense	green	red veins	Curved	Brown	Brown	Mid		
	CITIA NA CO	C		Reddish	Yellow with	G	D	Ъ	E. 1		
38	STAM-38	Semi spreading	Dense	green	red veins	Straight	Brown	Brown	Early		
	am. 3.5.4-	***		Reddish				_			
39	STAM-39	Upright	Dense	green	Semi curved	Straight	Grey	Brown	Mid		
—				Reddish	Yellow with	Semi	_				
40	STAM-40	Semi spreading	Dense	brown	red veins	curved	Grey	Brown	Mid		
	STAM-41	Upright	Sparse	Reddish	Pale yellow	Semi curved		Brown	Early		
41				green	with red veins		Grey				
				Reddish	Pale yellow						
42	STAM-42	Upright	Sparse	green	with red veins	Curved	Brown	Brown	Late		
	Note: STAM stand for Surguja Tamarind										
1											

evaluated at Surguja district of Chhattisgarh was classified into three categories *viz.* spreading, semi spreading and upright (Table 1). Among them, 9 genotypes were recorded with spreading type of growth habit (STAM-05, STAM-11, STAM-16, STAM-17, STAM-19, STAM-22, STAM-28, STAM-32, STAM-34) while 18 genotypes were recorded with semi spreading type of growth habit (STAM-01, STAM-03, STAM-04, STAM-09, STAM-10, STAM-13, STAM-14, STAM-15, STAM-21, STAM-23, STAM-26, STAM-30, STAM-31, STAM-31, STAM-31, STAM-37, STAM-38, STAM-40) and remaining 15 genotypes were recorded with upright type of growth habit (STAM-02, STAM-06, STAM-07, STAM-08, STAM-12, STAM-18, STAM-20, STAM-24, STAM-25, STAM-27, STAM-29, STAM-35,

STAM-39, STAM-41, STAM-42). Among all the genotype studied, the highest proportion of tree growth habit was observed in the semi spreading type (43%), followed by upright type (36%). The remaining 21% exhibited semi spreading growth habit (Fig. 1).

Tree foliage type

Tree foliage type for forty-two genotypes studied was

Fig. 1: Percentage of growth habit, tree foliage type and new flush colour of tamarind genotypes.

classified into two categories *viz.*, sparse and dense (Table 1). Among them, 20 genotypes were recorded with sparse type of tree foliage (STAM-02, STAM-04, STAM-05, STAM-06, STAM-07, STAM-11, STAM-12, STAM-17, STAM-18, STAM-19, STAM-21, STAM-23, STAM-25, STAM-26, STAM-27, STAM-28, STAM-32, STAM-35, STAM-41, STAM-42) and remaining 22 genotypes were recorded with dense tree foliage (STAM-01, STAM-03, SATAM-08, STAM-09, STAM-10, STAM-13, STAM-14, STAM-15, STAM-16, STAM-20, STAM-22, STAM-24, STAM-29, STAM-30, STAM-30, STAM-31, STAM-33, STAM-34, STAM-36, STAM-37, STAM-38, STAM-39, STAM-40). Among all the genotypes studied, 52% displayed dense foliage, where as 48% exhibited a sparse foliage type (Fig. 1).

New flush colour

New flush colour for forty-two tamarind genotypes studied and classified into two categories viz., reddish green and reddish brown (Table 1). Among all genotypes, 31 genotypes were recorded with reddish green colour of new flush, (STAM-1, STAM-2, STAM-3, STAM-4 STAM-5, STAM-7, STAM-8, STAM-9, STAM-10, STAM-11, STAM-15, STAM-16, STAM-17, STAM-18, STAM-20, STAM-21, STAM-22, STAM-23, STAM-25, STAM-26, STAM-28, STAM-29, STAM-31, STAM-32, STAM-33 STAM-34, STAM-37, STAM-38, STAM-39, STAM-41, STAM-42) while, 11 genotypes were recorded with reddish brown colour of new flush, (STAM-6, STAM-12, STAM-13, STAM-14, STAM-19, STAM-24, STAM-27, STAM-30, STAM-35, STAM-36, STAM-40). Among all the genotypes studied, 74% exhibited reddish green new flush colour and reddish brown colour of new flush was observed in 26% of tamarind genotypes (Fig. 1).

Flower pigmentation

Flower pigmentation for forty-two genotypes studied was classified into two categories *viz.*, pale yellow with red veins and yellow with red veins (Table 1). Among all genotypes, 20 genotypes were recorded with pale yellow with red veins flower (STAM-01, STAM-02, STAM-03, STAM-05, STAM-10, STAM-12, STAM-13, STAM-15, STAM-16, STAM-17, STAM-19, STAM-19, STAM-24, STAM-27, STAM-30, STAM-31, STAM-32, STAM-33,

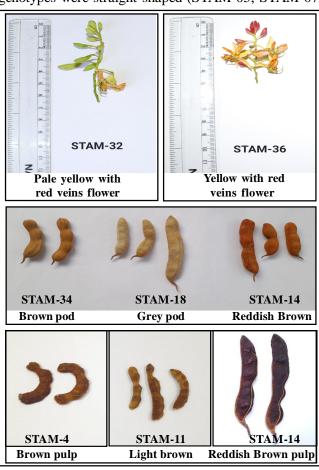


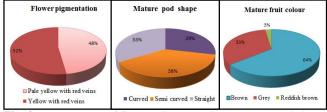
Plate 1: Variation in fruit (pod) shape of tamarind genotypes

STAM-35, STAM-41, STAM-42) whereas, 22 genotypes were recorded with yellow with red veins flower (STAM-04, STAM-06, STAM-07, STAM-08, STAM-09, STAM-11, STAM-14, STAM-18, STAM-20, STAM-21, STAM-22, STAM-23, STAM-25, STAM-26, STAM-28, STAM-29, STAM-34, STAM-36, STAM-37, STAM-38, STAM-39, STAM-40). Among all the genotype studied, yellow flowers with red veins were the most common, comprising 52% of the flower pigmentation types, while pale yellow with red veins accounted for 48% (Fig. 2).

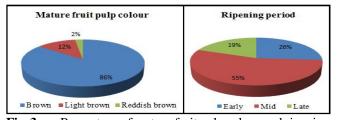
Mature pod shape

Mature pod shape for forty-two genotypes studied was classified into three categories *viz.*, curved, semi curved and straight (Table 1). Among all genotypes, 12 genotypes were recorded with curved shape (STAM-04, STAM-21, STAM-22, STAM-23, STAM-28, STAM-30, STAM-32, STAM-33, STAM-34, STAM-36, STAM-41, STAM-42) whereas, 16 genotypes were recorded with semi curved shape (STAM-01, STAM-02, STAM-03, STAM-06, STAM-09, STAM-11, STAM-12, STAM-13, STAM-15, STAM-18, STAM-16, STAM-24, STAM-26, STAM-27, STAM-39, STAM-40) and the rest 14 genotypes were straight shaped (STAM-05, STAM-07,

Plate 2: Variability in flower, pod and pulp colour of tamarind genotypes


STAM-08, STAM-10, STAM-14, STAM-16, STAM-17, STAM-20, STAM-25, STAM-29, STAM-31, STAM-35, STAM-37, STAM-38). The majority of pods were semi curved in shape, accounting for 38% and straight pods were observed in 33% genotypes, while 29% tamarind genotypes exhibited curved shape pod (Fig. 2).

Mature fruit (pod) colour


Mature fruit (pod) colour for forty-two genotypes studied was classified into three categories viz., brown, grey and reddish brown (Table 1). Among all genotypes, 27 genotypes were recorded with brown colour (STAM-01, STAM-02, STAM-04, STAM-05, STAM-07, STAM-10, STAM-11, STAM-12, STAM-13, STAM-15, STAM-16, STAM-17, STAM-19, STAM-21, STAM-22, STAM-23, STAM-28, STAM-29, STAM-30, STAM-31, STAM-32, STAM-34, STAM-35, STAM-36, STAM-37, STAM-38, STAM-42) while, 14 genotypes were recorded with grey colour (STAM-03, STAM-06, STAM-08, STAM-9, STAM-18, STAM-20, STAM-24, STAM-25, STAM-26, STAM-27, STAM-33, STAM-39, STAM-40, STAM-41) and 1 genotype was recorded with reddish brown colour (STAM-14). Among all the genotypes studied, 64% exhibited brown fruit colour, whilte grey colour observed in 33% of tamarind genotypes and reddish brown colour fruit was noted in 3% of tamarind genotypes (Fig. 2).

Mature fruit pulp colour

Mature fruit pulp colour for forty-two genotypes studied was classified into three categories *viz.*, brown, light brown and reddish brown (Table 1). Among all genotypes, 36 genotypes were recorded with brown pulp colour (STAM-01, STAM-02, STAM-03, STAM-4, STAM-06, STAM-07, STAM-08, STAM-09, STAM-10, STAM-12, STAM-13, STAM-15, STAM-18, STAM-19, STAM-20, STAM-21, STAM-22, STAM-23, STAM-24,

Fig. 2: Percentage of flower pigmentation, mature pod shape and mature fruit colour of tamarind genotypes.

Fig. 3: Percentage of mature fruit pulp colour and ripening period of tamarind genotypes.

STAM-25, STAM-26, STAM-27, STAM-28, STAM-30, STAM-31, STAM-32, STAM-33, STAM-34, STAM-35, STAM-36, STAM-37, STAM-38, STAM-39, STAM-40, STAM-41, STAM-42) whereas, 5 genotypes were recorded with light brown pulp (STAM-5, STAM-11, STAM-16, STAM-17, STAM-29) and 1 genotype was recorded with reddish brown pulp colour (STAM-14). The larger proportion of mature fruit pulp colour was noted in colour Brown with 86 %, followed by light brown with 12%, while reddish brown colour was noted in 2% genotypes (Fig. 3).

Ripening period

Ripening period for forty-two genotypes studied was classified into three categories viz., early, mid and late ripening period (Table 1). Among all genotypes, 12 genotypes were recorded with early ripening period (STAM-07, STAM-08, STAM-16, STAM-19, STAM-23, STAM-25, STAM-28, STAM-31, STAM-31, STAM-35, STAM-38, STAM-41) whereas, 23 genotypes were recorded with mid-season ripening period (STAM-01, STAM-03, STAM-04, STAM-09, STAM-10, STAM-11, STAM-13, STAM-14, STAM-17, STAM-18, STAM-20, STAM-21, STAM-22, STAM-24, STAM-27, STAM-29, STAM-30, STAM-33, STAM-34, STAM-36, STAM-37, STAM-39, STAM-40) and the rest 8 genotypes were recorded with late ripening period (STAM-02, STAM-05, STAM-06, STAM-12, STAM-15, STAM-26, STAM-32, STAM-42). Among all the genotypes evaluated, early fruit ripening was observed in 26% of the tamarind genotypes. A majority accounting for 55% exhibited midseason ripening period, while remaining 19% were characterized by late ripening period (Fig. 3).

Conclusion

The findings of this study reveal wide morphological variation among tamarind (Tamarindus indica L.) genotypes, reflecting the genetic diversity and adaptability to different growing conditions. Traits such as growth habit, tree foliage type, new flush colour, flower pigmentation, mature pod shape, mature pod colour, pulp colour and ripening period showed marked differences, each offering valuable insights for genetic improvement. Variation growth habit and foliage type points to opportunities for selecting trees that combine high productivity with suitability for diverse planting systems, including high-density orchards. New flush and flower colours, beyond their ornamental appeal, serve as reliable early stage indicators of genotypic diversity, aiding identification and selection. Pod characteristics like shape and colour along with pulp colour, remain critical determinants of market acceptance and processing 750 Varsha Minz et al.

suitability. Differences in ripening duration further support the classification of genotypes into early, mid season and late maturing groups, providing growers with flexibility in harvesting and post harvest handling. This work emphasizes the need to conserve tamarind's genetic resources while effectively using observed phenotypic diversity in future breeding programs. Integrating morphological characterization with molecular approaches can accelerate the development of improved cultivars that meet the demands of growers, processors and consumers, ensuring sustainability and economic resilience of tamarind cultivation.

References

- Ahmed, M., Rahman T. and Hossain M. (2019). Variability in pulp composition of tamarind (*Tamarindus indica* L.) germplasm. *Journal of Tropical Agriculture*, **57(2)**, 143-150.
- Asha, K., Menon P. and Thomas R. (2022). Flower colour diversity and pollination ecology of tamarind in semi-arid tropics. *Indian Journal of Horticulture*, **79(3)**, 410-417.
- Chakma, P., Saha B. and Nath D. (2020). Genetic variability in pulp colour and quality of tamarind (*Tamarindus indica* L.). *Journal of Horticultural Science*, **95(3)**, 310-316.
- Chakraborty, S., Roy M. and Choudhary A. (2021). Pod morphology and its genotypic diversity in tamarind. *Plant Genetic Resources Newsletter*, **184**, 15-23.
- Choudhary, A., Singh P. and Lakra J. (2016). Growth habit characterization of tamarind genotypes. *Advances in Horticultural Science*, **30(2)**, 145-150.
- El-Siddig, K., Gunasena H.P.M., Prasad B.A., Pushpakumara D.K.N.G., Ramana K.V.R., Vijayanand P. and Williams J.T. (2006). Tamarind: *Tamarindus indica* L. Fruits for the Future. International Centre for Underutilised Crops, Southampton, UK.
- Ghosh, M., Patra P. and Sen S. (2015). Assessment of morphological diversity in tamarind germplasm. *Genetic Resources and Crop Evolution*, **62(4)**, 637-645.
- Gowda, B., Shankar D. and Ramesh S. (2019). Pigment variation in tamarind flowers and its genetic basis. *Indian Journal of Plant Physiology*, **24(3)**, 321-329.
- Gupta, R. and Singh V. (2020). Pod morphology descriptors for tamarind germplasm characterization. *Indian Journal of Horticultural Research*, **12(4)**, 256-263.
- Hussain, M., Alam S. and Rehman F. (2019). Ripening dynamics and post-harvest physiology of tamarind fruits. *Postharvest Biology and Technology*, **156**, 110-118.
- Kannan, R., Murugan S. and Prakash A. (2017). Nutraceutical properties of tamarind pulp and industrial applications. *Food Chemistry Advances*, **3(1)**, 22-30.
- Khan, M. and Prasad P. (2014). Floral biology of tamarind (*Tamarindus indica* L.) in central India. *Journal of Eco-Botany*, **12(1)**, 37-43.
- Kumar, R., Sharma P. and Iqbal M. (2018). Morphological and phenological characterization of tamarind genotypes.

- Journal of Tropical Horticulture, 14(2), 85-94.
- Lakshmanan, D. and Mehta S. (2021). Breeding strategies for tamarind improvement: A review. *Fruit Breeding Journal*, **7(2)**, 150-168.
- Mahajan, P., Bhosale P. and More S. (2019). Genotypic variation in fruit pod traits of tamarind. *International Journal of Horticultural Science*, **26(1)**, 72-78.
- Mahapatra, A., Sahoo N. and Dash B. (2019). Socio-economic importance of tamarind in dryland agriculture. *Journal of Agroforestry Systems*, **41(3)**, 201-209.
- Meena, A., Reddy P. and Joshi V. (2021). Anthocyanin accumulation in new flushes of tamarind: A genotypic survey. *Plant Physiology Reports*, **26(4)**, 489-497.
- Morton, J.F. (1992). Tamarind (*Tamarindus indica* L.). Fruits of Warm Climates, 115-121.
- Narayanaswamy, P., Rao K. and Giri N. (2015). Chemical constituents and nutritional profile of tamarind pulp. *International Journal of Food Sciences and Nutrition*, **66(5)**, 541-549.
- Norton, T., Chavan R. and Gokhale S. (2015). Pollination ecology and flower pigmentation in tamarind. *Journal of Tropical Ecology*, **31(2)**,125-132.
- Patel, J., Solanki P. and Nair R. (2018). Canopy structure and leaf density characterization in tamarind genotypes. *Horticultural Science Journal*, **45(2)**, 212-220.
- Pooja, G.K., Adivappar N. and Kulkarni V. (2018). Tamarind descriptor-based characterization of germplasm. *Journal of Horticultural Descriptor Studies*, **8(4)**, 199-206.
- Prasad, P. and Menon R. (2013). Fruit development and ripening patterns in tamarind (*Tamarindus indica L.*). *Tropical Plant Research*, **2(1)**, 34-41.
- Rao, K. and Dey S. (2021). Phenological variation and ripening dynamics of tamarind genotypes. *Indian Journal of Fruit Research*, **18(3)**, 214-223.
- Rao, P., Naidu T. and Prasad D. (2014). Structural morphology and growth pattern of tamarind trees in drylands. *Indian Journal of Agroforestry*, **16(1)**, 53-59.
- Reddy, V., Iqbal A. and Sharma S. (2016). Flowering phenology and reproductive success of tamarind. *Journal of Horticultural Research*, **24(2)**, 201-209.
- Roy, A., Sen P. and Das S. (2022). Influence of extended ripening on tamarind fruit quality. *International Journal of Postharvest Biology*, **15(4)**, 298-306.
- Sharma, P., Kumari A. and Reddy K. (2017). Phenological stages and new flush pigmentation in tamarind. *Journal of Tree Physiology*, **37(5)**, 525-534.
- Singh, A. and Rao S. (2020). Agroforestry value and genetic diversity of tamarind in India. *Agroforestry Research Advances*, **8**(1), 75-83.
- Singh, K., Devi L. and Thomas S. (2021). Ripening period categorization and variability in tamarind accessions. *Indian Journal of Horticultural Science*, **76(2)**, 210-218.
- Verma, S. and Lakshmanan V. (2019). Functional role of new flush pigmentation in tamarind physiology. *Plant Science Letters*, **14(2)**, 201-209.